

"ORGANIC AND INORGANIC CONTAMINANTS OF ATMOSPHERIC PARTICULATE MATTER"

PhD Student Annamaria Falgiani PhD Supervisor Prof.ssa Silvia Illuminati,

INTRODUCTION

The main goal of the present PhD project is to sample, chemically characterize and study the spatial-temporal evolution of organic and inorganic pollutants in the atmospheric particulate matter over the city of Ancona, a highly polluted area of the Marche Region. The harbor of Ancona has recently become a crucial step in the MSC cruises along the Adriatic Sea, adding an additional source of atmospheric pollution, especially concentrated during summer.

EXPERIMENTAL SECTION

1. Field sampling

Ancona - Campus of the Università Politecnica delle Marche

First direct measurements of size-segregated aerosol mass fractions

> From July, 2021 to March, 2022

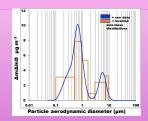
>The sampler is equipped with a five-stage high-volume cascade impactor coupled to a 10 μ m preseparator for the effective collection of six PM₁₀ fractions.

Flow rate at 1.13 m³ min⁻¹

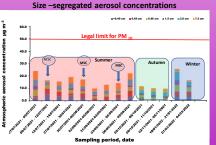
>3 -day sampling strategy, samples were collected twice at month during summer and one time at month during the remaining part of the year.

2. Aerosol mass weighing

Differential weighing procedure previously set-up¹


Weighing conditions: $T = 25 \pm 2^{\circ}C$; $RH = 40 \pm 2\%$

Electronic microbalance (Radwag XA.3Y.F) with weighing chamber and pan specifically designed for filter weights

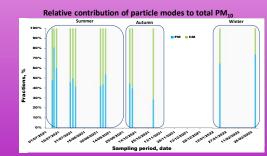

3. Cascade-impactor data inversion

- Inversion methodology for continuous aerosol mass size distribution²
- Results reported in the differential form Δm/ΔlnD (Δm = mass concentration for each stage; ΔlogDp = difference of logarithms of stage size boundaries)

RESULTS AND DISCUSSION

Aerosol mass concentrations

Data were referred to T and P conditions calculated as averages during the period of each individual sampling


Size-segregated aerosol reported as particle diameter

μm 10-7.2	μg m ⁻³ 3.7± 0.4 (1.0-6.8)	The average mass concentration of the
7.2-3.0	3.2 ± 0.3 (1.2-6.6)	total PM ₁₀ given as sum of the mass concentration of each fraction is 16 ± 1.4 µg
3.0-1.5	1.6 ± 0.17 (0.5-4.1)	
1.5-0.95	2.5± 0.3 (1.3-5.1)	
0.95-0.49	2.7± 0.3 (0.4-4.9)	
<0.49	2 3+ 0 3 (0 2-5 1)	m ⁻³ (min 4.6- max 33)

These values are in good agreement with those measured by the fixed stations belonging to the Air Quality Survey Network of the Marche Environmental Protection Agency (ARPA-MARCHE). The total PM_{10} mass concentration is below the legal limit of 50 µg m⁻³ established by the Italian law (Italian Dlgs n. 155, 2010) in the enactment of the Ambient Air Quality Directive 2008/50/EC of the European Union and WHO references values.

Seasonal trend of different particle modes

Aerosol mass size distribution

Two modes can be recognized: 1. fine mode FM (<2.5 μm) 2. coarse mode CM (2.5-10 μm) :

_	
The contribution of each mode is : FM ~ 55 % of total PM ₁₀ CM ~ 40% of total PM ₁₀	The contribution in the diff seasons of total PM ₁₀ is: Summer season: FM ~ 52 9 CM ~ 48%
	Autumn season: FM ~ 38 9
	CM ~ 62%
	Winter season: FM ~ 70 9
	CM ~ 30%

- FM increases during the summer week-ends, in particular during the cruise ship's stationing in the harbor of Ancona, in agreement with the data reported in the literature³.
- FM increases during winter season probably due to domestic heating.

FUTURE PERSPECTIVES

- Analysis of metals in the samples taken
- Analysis of back trajectories to determine the sources of atmospheric particulate matter
- Development of analytical extraction methods for PAHs and N-PAHs
- New PM₁₀ measurement campaigns for the subsequent determination of PAHs and n-PAHs

REFERENCES

- S. Illuminati, S. Bau, A. Annibaldi, C. Mantini, G. Libani, C. Truzzi, G. Scarponi Atmos. Environ., 125 (2016) 212-221.
- Bau, S., Witschegr, O. J. Phys. Conf. Ser. 429 (2013) 012002/1-012002/10.
 M. Viana, P. Hamminght, A. Colette, X. Querol, B. Degraeuwe, I. De Vlieger, J. Van Aardenna. Atmos. Environ. 90 (2014) 96-105