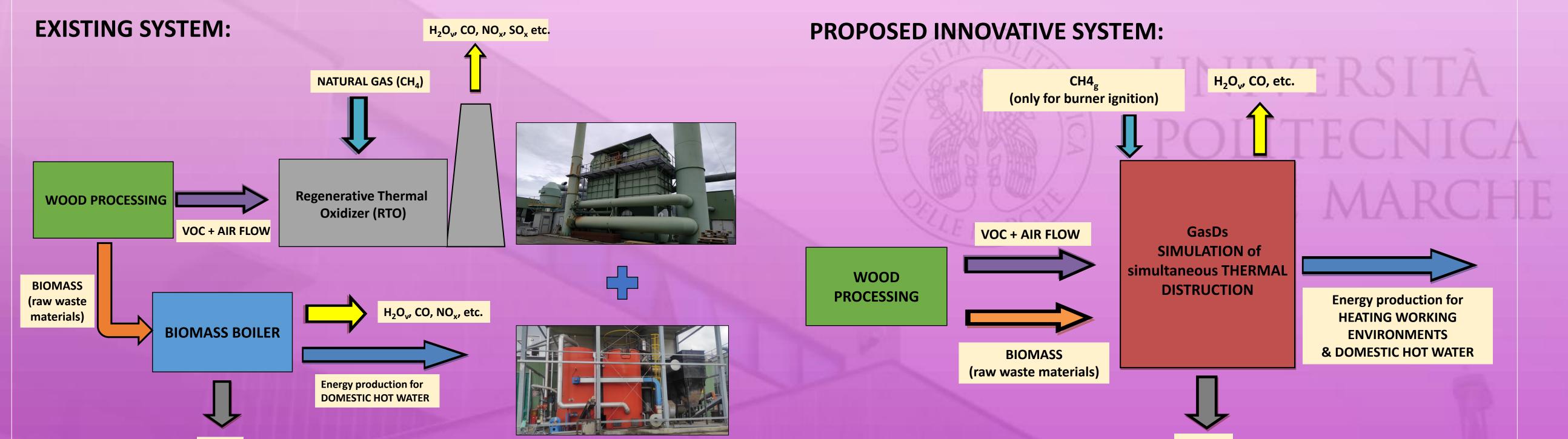


Corso di Dottorato di Ricerca in Scienze della Vita e dell'Ambiente - Ciclo XXXV Energy recovery from industrial processes using chemical substances PhD student Eleonora Tagliolini - Tutor Prof. Paolo Principi

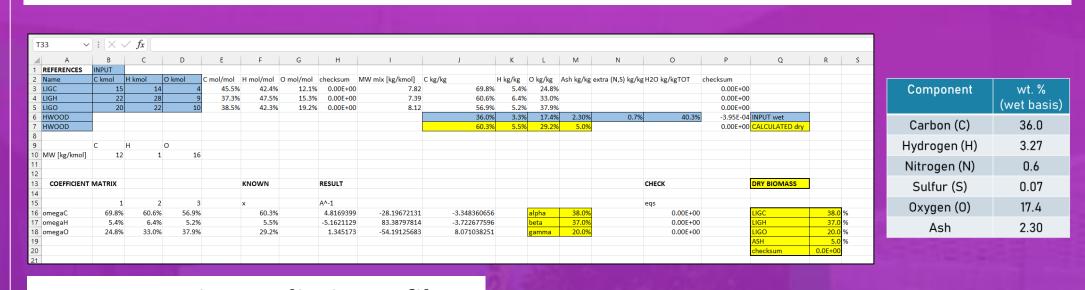
ABSTRACT


The research aims to reduce the environmental impact and recover energy in industrial processes that use chemicals. A company, which turns virgin wood into end products, is taken as a case study. The purpose is to recover useful energy by optimizing the abatement of VOC pollutants and reusing the raw material waste. A mass balance of the entire abatement system was carried out by characterization of the inlet-outlet flow and samples are analyzed in lab. Also, various CFD simulations are in progress to evaluate the actual abatement system and study a new innovative one.

INTRODUCTION

Environmental impact and energy recovery from VOC abatement processes are evaluated firstly with a bibliographic research. Technologies and plants active in the surrounding area of Ancona are analyzed. The doctorate co-financing company has a proven experience in environmental and energy sector. By this know-how it was possible to select an industry in the woodworking sector. This company turns virgin wood into end products such as doors and furnishing. For the regulatory framework, there are strict limits on atmospheric emissions by industrial processes and several monitoring operational procedures. The study of innovative solutions to reduce the pollutant emissions and recover energy is essential.

MATERIALS & METHODS


The measurements and sampling carried out shown the trend of VOC flows produced in relation with raw materials waste production. These are based on annual production and types of painting processing used. The existing abatement system has a high yield (95-98%) but a very high consumption of methane fuel. Therefore, an alternative and innovative scenarios of the abatement system are hypothesized. Thus, are studied through Computational Fluid Dynamics (CFD) simulation in collaboration with the Polytechnic of Milano. **GasDs software** is being used to evaluate the existing system and study the scenarios. In them is hypothesized to recreate a simultaneously thermal destruction of the biomass (raw material waste) and the air flow with VOCs that comes from the wood processing.

PRELIMINARY RESULTS – GasDs CFD SIMULATION

1. PRELIMINARY OPERATIONS

- Feedstock composition;
- CHNSO Analysis;
- Umidity content.

Representative preliminary file

2. SIMULATION

Imput parameters:

- Number of components;
- Number of reactions;
- Reactor geometry;
- Flowrate;
- Start-up T;
- %V/v of the gaseous agent.

!Number of components =	50		
!Componenets names	02,N2,C0,C02,H2,H20,CH4,C2	H6,	C2H4,C3H6,C3H8,C2H2,LVG,XYLAN,ALD3,
1	CH3OH, HCOOH, HMFU, COUMARYL,	FEN	OL, HAA, GLYOX, MECHO, CH2O, ETOH, BENZ,
!	TOLUO, FE2MACR, H2OL, ASH, CHA	R,C	ELL,CELLA,HECELL,HCE1,HCE2,LIGC,
!	LIGCC, LIGOH, LIG, LIGH, LIGO,	COH	2S, CO2S, COS, CH4S, C2H4S, CH3OHS, ACQUA,
!	CH2S		
!Number of reactions =	! 30		
Reactions ID number	! 1,2,3,4,5,6,7,8,9,10,11	,12	,13,14,15,16,17,18,19,20,21,22,23,24,
!	! 25,26,27,28,29,33		
Number of Particles	(max=10) ! 1		
!Number of Particle sect	tors (max 30) ! 1		
!Uniform Particles init:	ial Temperature (K)! 300		
Uniform initial Pressur	re (Ata) ! 1.0		
	PROCESS		
! Equipment surface (m^:	2)	=!	0.785
! Equipment Height (m)	=!	5
! Void fraction (Void vo	olume/equipment Volume) *100	=!	55
! Number of Volume Eleme	ents (max=20)	=!	2
! Feed Flow (Nm^3/s)		=!	1
! Bulk Initial Temperate	ure (K)	=!	300

Top Radiant Temperature (K) (0. = non active) Top Transfer_Line Height (m) (0.= non active) Components feed volume fractions % :!

> Not reported values are set=0.0 (values are normalised by the program)

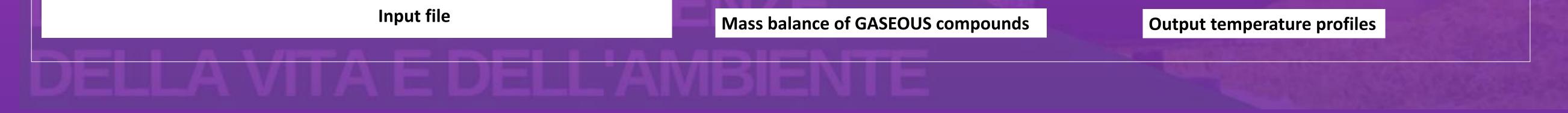
Total data =! 3 75.24

20.00

CH30H 4.762

3. EXPECTED RESULTS

SOLID# 1	FEED (kg/h)	wt%	EXIT (kg/h)	wt%%
ASH CHAR CELL CELLA HECELL HCE1 HCE2 LIGC LIGCC	2.9823 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 22.666 0.0000	2.9823 0.0000 0.0000 0.0000 0.0000 0.0000 22.666 0.0000	2.9823 0.32752E-07 0.0000 0.0000 0.0000 0.0000 0.0000 0.21045E-21 0.14976E-09	99.912 0.10972E-05 0.0000 0.0000 0.0000 0.0000 0.0000 0.70505E-20 0.50173E-08
LIGOH LIGH LIG COH2S COS CH4S C2H4S CH3OHS C02S ACQUA CH2S H2OL TOTAL	0.0000 22.069 11.929 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 40.264 99.910	0.0000 22.069 11.929 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.52549E-13 0.22497E-20 0.66360E-16 0.88418E-14 0.68645E-08 0.32216E-14 0.52574E-10 0.69278E-10 0.28503E-15 0.0000 0.0000 0.57512E-09 0.71712E-13 2.9823	0.17605E-11 0.75370E-19 0.22232E-14 0.29622E-12 0.22997E-06 0.10793E-12 0.17613E-08 0.23209E-08 0.95490E-14 0.0000 0.0900 0.19267E-07 0.24025E-11


Mass balance of SOLID compounds

	1 Barrier				
GAS PHASE	FEED (kg/h)	wt%	EXIT (kg/h)	wt%	mol%
N2	3385.3	72.674	3385.4	71.193	71.919
02	1027.8	22.065	559.88	11.774	10.413
H2	0.0000	0.0000	0.28701E-03	0.60356E-05	0.84725E-04
H20	0.0000	0.0000	344.48	7.2442	11.380
CO	0.0000	0.0000	0.14389	0.30258E-02	0.30571E-02
C02	0.0000	0.0000	463.99	9.7574	6.2744
CH4	0.0000	0.0000	0.42012E-03	0.88349E-05	0.15585E-04
C3H6	0.0000	0.0000	0.19137E-06	0.40245E-08	0.27065E-08
C3H8	0.0000	0.0000	0.59022E-13	0.12412E-14	0.79655E-15
C2H2	0.0000	0.0000	0.12257E-03	0.25776E-05	0.28015E-05
C2H4	0.0000	0.0000	0.68510E-03	0.14407E-04	0.14533E-04
C2H6	0.0000	0.0000	0.88281E-08	0.18565E-09	0.17472E-09
CH2O	0.0000	0.0000	0.52763E-03	0.11096E-04	0.10458E-04
CH30H	245.07	5.2609	0.24375E-03	0.51259E-05	0.45272E-05
HCOOH	0.0000	0.0000	0.11584E-03	0.24359E-05	0.14978E-05
Sub TOTAL	4658.2		4753.9		
TOTAL			4755.2		

					Temper	ature [K]					
3	300										
2	290										
Ξ÷	280										
Temperature [K]											Reactor volume: 1 Reactor volume: 2 Reactor volume: 3
Temp	270										Reactor volume: 4
2	260	\langle									
2	250										
	0	10	00 20	00 30	100 40		000 60	000 7	000 80	00	
						time [min]					

Elaborated representative profiles

TEMPERATU	RE PROFILES	(K)		
	S SOLI 6.03	-		
+	+			
I	I			
+	+			
128	7.46	1419.58		
+	+			
I	I			
+	+			
30	0.00	1292.60		
DETAILED	COMPOSITION wt%	GAS PHASE mol%		
H20	7.2442	11.380		
C02	9.7574	6.2744		
FUEL1	0.24245E	-01 0.53531E-02		
02	11.774	10.413		
N2	71.193	71.919		
2.17 Solid ph	(wet)	ic value kcal/kg	:	3243.64 5.34

