

PLANKTONIC FORAMINIFERA AS PROXY FOR CLIMATE CHANGE

PhD course in Sustainable Development and Climate Change

University School for Advanced Studies IUSS Pavia - 39° cycle

Laura Bellentani

DISVA, Laboratory of Sedimentology and Paleoecology INTRODUCTION OBJECTIVE

In the context of rapid climate change, polar regions represent extreme environments where the effects of global warming are particularly pronounced. Sea-ice environments host unique microhabitats that are critical for polar ecosystems, yet the faunal composition of these systems remains understudied, particularly planktonic foraminifera, single-celled microorganisms which create a calcium carbonate shell capable of fossilizing and recording surrounding environmental variables.

Tutor: Prof. Anna Sabbatini

Investigate the presence of distinct morphological characteristics in planktonic foraminiferal species within Antarctic Sea ice cores and sea-water samples from the Weddell and Ross Seas. Specifically, if *Neogloboquadrina pachyderma* (1) develop an adaptive morphological design of their tests compared to those living in the seawater column, and if (2) these morphological designs evolve in a unique sea-ice species confirmed also by molecular analyses.

Morphological differences were found between specimens from sea-ice and seawater environments, in two sampling areas from different part of the South-Pole. This difference was investigated through morphometric analysis on the samples from the **Weddell Sea**. Specimens of *Neogloboquadrina pachyderma* show differences in size, with specimens of the sea-ice presenting a greater area then the specimens of the water column, and in shape, more pronounced in the horizontal dimension than in the vertical one, resulting in a more rhomboid shape rather than a square one. Statistical analysis revealed that groups are significantly different.

FUTURE ANALYSIS

- **DNA analysis** currently at the University of Stirling.
- Elliptical Fourier Analysis on shape contours of specimens from the Ross Sea

PCA: Shape distribution

Elliptical coefficients (through harmonics) were obtained with Fourier Analysis, which enabled shape contour analysis (PCA, LDA). Forms representative of the sea-ice environment are more comparable to each other than those associated with the water column variable, which are less uniform. LDA matrix shows that **53%** of the individuals from sea-ice were **correctly classified as sea-ice**, 47% of sea-ice individuals were misclassified as sea-water. **62%** of **sea-water** individuals were misclassified, whereas 38% were misclassified as sea-ice.

CONCLUSIONS

The morphological distinction between the two environmental variables is moderate, but preliminary results suggest a **potential morphological signal** discriminating foraminiferal specimens associated with the two matrices. The

and comparison with those previously conducted in the Weddell Sea.

Morphological and ultrastructural analysis of the shell using Scanning

Electron Microscopy (SEM), X-ray imaging and NanoSIMS.

difference in size suggests a hyper calcification caused by supersaturated

conditions of CaCO₃, due to the **high salinity** state of the **brine channels** of the

ice. These last are also the probable cause of the variability in size and form of

the *N. pachyderma* forced to live in this constrained dimension.