

Corso di Dottorato di Ricerca in Scienze della Vita e dell'Ambiente - Ciclo XXXIX

FTIR Imaging Spectroscopy: a Novel Tool for **Improving the Differential Diagnosis of Human Uterine Lesions**

PhD Student: Chiara Santoni - Tutor: Prof. Elisabetta Giorgini Vibrational Spectroscopy Laboratory, DiSVA

Introduction & Aim

Background

✓ Uterine smooth muscle tumors (USMTs) include a spectrum from benign leiomyomas (LMs) to malignant leiomyosarcomas (LMSs) [1,2].

Sample Collection & Preparation 000

• ~ 5 μ m thickness sections from FFPE samples collected from surgical hysterectomy.

Histological Analysis

• Masson's trichrome staining kit with aniline blue.

N. samples	Uterine lesion
5	LMS
5	LM Cellular
5	LM Usual
3	LM Bizzarre
3	LM Apoplectic

✓ LMs arise from smooth muscles in uterine myometrium, while LMs originate from myometrial mesenchymal cells [1,2].

Some histological overlap between LMSs and LM variants makes difficult the diagnosis [1].

> **Objective:** Given the need for molecularlevel tools to improve diagnostic accuracy, this study focuses on identifying reliable spectral markers to support the differential diagnosis between LMS and LM subtypes.

Olympus BM50 optical microscope. •

FTIR Imaging Analysis

- Bruker INVENIO-R interferometer equipped with a Hyperion 3000 Vis-IR microscope and a
 - Focal Plane Array detector. IR maps (164×164 µm² size, 4096 spectra, 2.56×2.56 µm² spatial
- Eng resolution) acquired in transmission mode in the 4000–900 cm⁻¹ spectral range (256 scans; 4 cm⁻¹ spectral resolution) (OPUS 7.5 software package, Bruker Optics, Ettlingen, Germany).

Data Analysis

- Hierarchical Cluster Analysis (HCA, Euclidean distance and the Ward's method) (CytoSpec software v. 2.00.01).
- N. Principal Component Analysis (PCA) (OriginPro 2023 software, OriginLab Corporation, Northampton, MA, USA).
 - One-way analysis of variance (ANOVA) multiple comparison test (software Prism6, Graphpad software, Inc., San Diego, CA, USA).

Results & Discussion

High Resolution Imaging Analysis

Cellular component analysis

Principal Component Analysis & Loading Spectra

Collagen amount

A different amount of collagen was found in LMs: higher but with an uneven distribution in LM-BZ and **LM-AP.** The lowest amount was observed in **LM-CL**.

Collagen structural organisation

A greater degree of collagen organisation (FOLDED/UNFOLDED and TRIPLE HELIX) was observed in LM-CL and LM-US, whereas LM-BZ and LM-AP showed a more disorganised protein component.

- Highly cellular and actively proliferating malignant tissue in LMS: higher amounts of total phosphates and of DNA and RNA; lower amounts of glycogen and carbohydrates. A similar trend is observed in LM-CL. LM-US, LM-BZ and LM-AP exhibit minimal cellular components, with lower values.
- The **TUMOR INDEX (1170 cm⁻¹)**, associated with phosphorylated proteins and tumorigenicity, reaches its highest value in LMS, effectively distinguishing it from all **LM subtypes**.

Conclusions

FTIR imaging, combined with histology and statistical analysis, proved to be a valuable approach for the differential diagnosis of USMTs. Spectral markers, including the TUMOR INDEX, enabled reliable discrimination between LMS and LM subtypes. Notably, this method allowed clear **differentiation** between **LMS** and **LM-BZ**, which are histologically similar and difficult to distinguish using conventional methods. In addition, the high spectral similarity observed between LM-CL and LM-US suggests a possible

References

[1] Belloni, A. et al. FTIR Microspectroscopy as a new probe to study human uterine lesions: Characterization of tumor cell lines from uterine smooth muscle cells and evaluation of EPA and DHA in vitro treatments. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1870(1) (2024).

[2] Belloni, A. et al. Uterine leiomyoma as useful model to unveil morphometric and

