

Corso di Dottorato di Ricerca in Scienze della Vita e dell'Ambiente - Ciclo XXXVII

A winding road for a circular process. Exploiting algal biotechnology for the remediation of digestate and the production of bio-stimulants

Since NH₄ + may use **K**+ **channel** to enter the cell, K⁺ concentration was increased in the medium to verify if it could counter ammonia toxicity.

Response to K⁺ addition was species-specific. In *T.* obliquus a better growth was achieved. The hypothesis is a **different** affinity of potassium channel to NH₄ in the four species

Biostimulant application was carried out using liquid extracts of the consortium and each single species

rockets treated with algal extracts

were significatively bigger.

mM Nitrogen Ratios ($NH_4CI / NaNO_3$) Biomass ratio 0,8 0,6 0,4

NH₄ + / NH₃ toxicity was

NaNOa

50 mM

fд

75%

50%

assessed for concentration of

Cholorophyll a

Species proportion

15

 $NH_{\perp}CI$

Centric species O O

T. obliquus 🔍 🔾

nitrogen ranging from 1.5 to

☐ Cells ratio 0,2 1.5 3 5 10 15 30 50 mM Nitrogen

Experiments regarding consortium growth in serial dilution of digestate showed that maximum cell density was highly affected by digestate concentration. 7% dilution was chosen for further experiments as best compromise between dilution and algal growth

Immobilization onto alginate beads increased both growth rate and algal density. Cocultivation with *Azospirillum* brasilense, a PGPB bacteria, was not successful.

with bacteria

with bacteria

AR YE 2nd